Search results for "electric breakdown"
showing 8 items of 8 documents
Characterization of soft breakdown in thin oxide NMOSFETs based on the analysis of the substrate current
2001
We have investigated the properties of soft breakdown (SBO) in thin oxide (4.5 nm) nMOSFETs with measurements of the gate and substrate leakage currents using the carrier separation technique. We have observed that, at lower gate voltages, the level of the substrate current exhibits a plateau. We propose that the observed plateau is due to the Shockley-Hall-Read (SHR) generation of hole-electron pairs in the space charge region and at the Si-SiO/sub 2/ interface. At higher voltages, the substrate current steeply increases with voltage, due to a tunneling mechanism, trap-assisted or due to a localized effective thinning of the oxide, from the substrate valence band to the gate conduction ban…
Analysis of multipactor RF breakdown in a waveguide containing a transversely magnetized ferrite
2016
In this paper, the multipactor RF breakdown in a parallel-plate waveguide partially filled with a ferrite slab magnetized normal to the metallic plates is studied. An external magnetic field is applied along the vertical direction between the plates in order to magnetize the ferrite. Numerical simulations using an in-house 3-D code are carried out to obtain the multipactor RF voltage threshold in this kind of structures. The presented results show that the multipactor RF voltage threshold at certain frequencies becomes considerably lower than for the corresponding classical metallic parallel-plate waveguide with the same vacuum gap
Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET
2020
International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.
Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs
2023
The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ( T BD ) and charge-to-breakdown ( Q BD ) of gate oxide were extracted and compared. The effect of electron radiation on the device lifetime reduction can be observed at lower stress gate-to-source voltage ( V GS ) levels. The models of T BD and Q BD dependence on the initial gate current ( I G0 ) are proposed which can be used to describe the device breakdown behaviour. peerReviewed
Influence of low amounts of nanostructured silica and calcium carbonate fillers on the large-area dielectric breakdown performance of bi-axially orie…
2014
Influence of low amounts (1.0-2.0wt-%) of nanostructured silica and calcium carbonate fillers on the large area dielectric breakdown performance of bi-axially oriented polypropylene (BOPP) is analyzed. A multi-breakdown measurement method based on the self-healing breakdown capability of metallized film is utilized for the breakdown characterization in order to cover relatively large total film areas, thus leading to results of higher relevance from the practical point-of-view. The dispersion and distribution qualities of filler particles at the nanoscale are evaluated with transmission electron microscopy (TEM) imaging. Weibull statistical analysis suggests that the breakdown distribution …
Partial discharge tests using CIGRE method II
2000
In this paper, the results of an experimental project on insulating material aging, performed in both Denmark and Italy, are reported. This study was concerned with partial discharge (PD) behavior at temperatures between 30 and 80/spl deg/C using CIGRE method II. The material tested was a commercial polymethylmethacrylate (PMMA) which was chosen not for its good dielectric properties but rather because much of its discharge resistance data at ambient temperature is already well documented. A description is given of the theoretical and experimental methodology followed in this work. Mixed Weibull analysis techniques in terms of the PD amplitude and phase distribution characteristics were emp…